Outline

- Introduction, principles
- Method n°1 : Demons
- Evaluation
- Method n°2 : B-Splines
- Method n°3 : Deep-learning registration
- The « sliding » problem
- Method n°4 : TPS (Thin Plate Spline)
- Spatio-temporal deformable registration
- Conclusion

Deep learning image registration

- Can we learn relationship between images and transformations ?
 - Supervised: Learn from known transformations
 - Unsupervised: Use cost function
 - Weakly-supervised : Use known correspondence in training data
- Typically requires lots of data and time to train network
- Once trained, registration results can be produced very quickly for new images

Deep learning (1/2)

- Model: layers, neurons, input, output
- Loss function
- Optimization, backpropagation
- Convolutional Neural Networks

ConvNet:

- preserve spatial structure
- Multi resolution

Deep learning (2/2)

• Training stage

- Optimisation: find the parameters values (neurons)
- Need large training dataset
- Need Training/Validation/Test datasets
- GPU required

Inference stage

- Send input to model, get output
- Very fast

(1/3) Supervised

- Required ground truth transformation
 - Simulation, manual alignment, classical image registration

From: UCL MPHY0025 (Jamie Mcclelland)

FlowNetCorr

Training dataset for supervised learning

 "Supervised deformable image registration using deep neural networks". PhD thesis. Eppenhof, K. A. J. (2020)

• Training dataset:

- Real images with ground truth deformation
- Synthetically deformed clinical images (+augmentation transformations)
- Variability ?

• (preliminary) Results

- Very fast
- Reasonable accuracy

(2/3) Unsupervised

From: UCL MPHY0025 (Jamie Mcclelland)

Deep learning based registration

• One example: Vos et al. 2017

End-to-End Unsupervised Deformable Image Registration with a Convolutional Neural Network

Computer Vision and Pattern Recognition MICCAI2017

- Principle
 - Unsupervised
 - Input: pairs of images (training dataset)
 - Output: control points displacement as BSpline
 - Simultaneous DIR optimisation of several image pairs
 - Net architecture: layers convolutions, downsampling
 - Backpropagation of image dissimilarity (norm CC)
 - mini-batch stochastic gradient descent (Adam [4])

Deep learning based registration

- Optimisation:
 - Learn weights values that produce Bspline coeff from input
 - Auto differentiation with backpropagation
 - Convolution kernels
- Example with MRI database
 - 45 images (2D+t), 20 timepoints, 256x256
 - Pairs: corresponding slices (diff time)
 - 16 kernels per convolution layer
 - 16x16 control points
 - Bspline or TPSpline
 - Mini batch of 32 pairs, 10k iterations

Example

Fig. 4. Top, from left to right: The fixed (ED), the moving (ES), the DIRNet-C1 warped, and the SimpleElastix warped images. Bottom: Heatmaps showing absolute difference images between the fixed image and (from left to right) the original, the DIRNet warped, and the SimpleElastix warped moving images.

GPU memory issue

- Medical images are (often) 3D
- 3D CNN ? Potential (GPU) memory/time issue
- Alternatives
 - 2D CNN, slices by slices
 - 3D patch (reduced)
 - Slices in different direction: 3 nets to combine
 - Etc ..

Deep learning based registration

Results

- May require pairs of already registered images (supervised)
- May not require pairs of already registered images (unsupervised)

14

- Results may be comparable to conventional DIR, still WIP
- However, still limited experiments, often 2D only
- Main advantage: speed. One-pass registration.

Reviews

Table 1 DL-based DIR models supervised by reference DVFs.

Table 1	2
---------	---

DL-based DIR models supervised by artificial DVFs.

Authors	Publication Year	Region of interest (ROI)	Modality	Patch- based	Reference DVF Obtained by
Yang et al. ⁴⁰	2017	Brain	MR-MR	Yes	LDDMM
Rohé et al. ⁴¹	2017	Heart	MR-MR	No	Surface matching
Cao et al. ⁴²	2017	Brain	MR-MR	Yes	Syn and Demons
Cao et al. ⁴³	2018	Brain	MR-MR	Yes	Syn and Demons
Onieva et al. ⁴⁴	2018	Lung	CT-CT	No	ANTs
Fan et al. ⁴⁵	2019	Brain	MR-MR	Yes	Syn and Demons

_	Authors	Publication Year	ROI	Modality	Patch- based	Reference DVF Obtained by
-	Sokooti et al. ⁴⁶	2017	Lung	CT-CT	No	Mixed spatial frequency
	Krebs et al. ⁴⁷	2017	Pelvic	MR-MR	No	Statistical deformation models
	Eppenhof et al. ^{48,49}	2018	Lung	CT-CT	No	Random numbers
	Sokooti et al. ⁵⁰	2019	Lung	CT-CT	No	Mixed spatial frequency

			10000
	Radiation Medicine and Protection 1 (2020) 171-178		P
	Contents lists available at ScienceDirect	RADIATION MEDICINE AND	
KeAi	Radiation Medicine and Protection	PROTECTION	
	journal homepage: www.radmp.org		Т
Review			Ľ
A review on 3D deformable image registration and its application in dose warping		Chack for updates	Y
Haonan Xiao. (e Ren. Jing Cai [*]		P
Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China			P

Physics in Medicine & Biology
TOPICAL REVIEW
Deep learning in medical image registration: a review
Yabo Fu ¹ , Yang Lei ¹ , Tonghe Wang ^{1,2} , Walter J Curran ^{1,2} , Tian Liu ^{1,2} and Xiaofeng Yang ^{1,2} 🗓
Published 7 October 2020 \cdot \odot 2020 Institute of Physics and Engineering in Medicine
Physics in Medicine & Biology, Volume 65, Number 20
Citation Yabo Fu et al 2020 Phys. Med. Biol. 65 20TR01

Publication Authors ROI Modality Patch-Supervised Year based by Sentker 2018 CT-CT No DIS Lung et al.⁵² Cao et al.43 2018 DIS, DVF Prostate CT-MR Yes Hu et al.53 2018 Prostate MR-MR No CON, ADV Fan et al.54 2018 Brain MR-MR Yes DIS, DVF, ADV Kearney 2018 Head and CBCT-Yes DIS et al.55 CT Neck Li et al.⁵⁶ 2018 MR-MR Brain No DIS, DVF Krebs et al.⁵⁷ 2018 MR-MR No DIS, DVF Heart Stergios 2018 MR-MR No DIS, DVF Lung et al.58 Sun et al.59 2018 MR-US No DIS Brain Zhang et al.⁶⁰ 2018 MR-MR No DIS, DVF, Brain INV Fan et al.⁶¹ 2019 Brain MR-MR Yes DIS, DVF, Pelvic ADV de Vos et al.³⁶ 2019 CT-CT No DIS, DVF Heart MR-MR Lung Balakrishnan 2019 DIS, DVF, Brain MR-MR No et al.¹¹ CON Kim et al.³³ 2019 Liver CT-CT DIS, CYC, No IDE Elmahdy 2019 CT-CT DIS, CON Prostate Yes et al.⁶² Kuang et al.⁶³ 2019 Brain MR-MR No DIS, DVF, CYC Yu et al.⁶⁴ 2019 Abdomino-PET-CT DIS Yes pelvic Jiang et al.³⁵ 2020 CT-CT DIS, DVF Lung No Fu et al.³⁴ 2020 CT-CT Yes DIS, DVF, Lung ADV Fechter 2020 CT-CT Yes DIS, DVF, Lung et al.⁶⁵ MR-MR CYC Heart Lei et al.⁶⁶ Abdomen CT-CT 2020 Yes DIS, DVF, ADV

Unsupervised and weakly supervised DL-based DIR models.

Table 3

Notes: DIS, Dissimilarity; DVF. DVF regularization; ADV. Adversarial loss; CON. Contour overlapping; INV. Inverse consistency; CYC. Cycle consistency; IDE. Identity loss.

Ressources

- https://arvidl.github.io/blog/2019/12/04/image-registration-resources-wip
- <u>https://github.com/Duoduo-Qian/Medical-image-registration-Resources</u>
- https://github.com/learn2reg/tutorials2019
- https://github.com/voxelmorph/voxelmorph
- <u>https://github.com/DeepRegNet/DeepReg</u>
- <u>https://colab.research.google.com/drive/1WiqyF7dCdnNBIANEY80Pxw_mVz4fyV-S?usp=sharing</u>
- Introduction to Medical Image Registration with DeepReg, between Old and New <u>https://colab.research.google.com/github/DeepRegNet/DeepReg/blob/main/docs/Intro_to_Medical_Image_Registration.ipynb</u>